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ABSTRACT
Video-based visible-infrared person re-identification (VVI-ReID)
aims to retrieve video sequences of the same pedestrian from dif-
ferent modalities. The key of VVI-ReID is to learn discriminative
sequence-level representations that are invariant to both intra- and
inter-modal discrepancies. However, most works only focus on the
elimination of modality-gap while ignore the distractors within the
modality. Moreover, existing sequence-level representation learn-
ing approaches are limited to a single video, failing to mine the
correlations among multiple videos of the same pedestrian. In this
paper, we propose a Style Augmentation, Attack and Defense net-
work with Graph-based dual interaction (SAADG) to guarantee
the semantic consistency against both intra-modal discrepancies
and inter-modal gap. Specifically, we first generate diverse styles
for video frames by random style variation in image spaces. Fol-
lowed by the style attack and defense, the intra- and inter-modal
discrepancies are modeled as different types of style disturbance
(attack), and our model achieves to keep the id-related content in-
variant under such attack. Besides, a graph-based dual interaction
module is further introduced to fully explore the cross-view and
cross-modal correlations among various videos of the same identity,
which are then transferred to the sequence-level representations.
Extensive experiments on the public SYSU-MM01 and HITSZ-VCM
datasets show that our approach achieves the remarkable perfor-
mance compared with state-of-the-arts. The code is available at
https://github.com/ChuhaoZhou99/SAADG_VVIReID.

CCS CONCEPTS
• Computing methodologies → Visual content-based index-
ing and retrieval.
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1 INTRODUCTION
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Figure 1: The insights of our methods. (a) The intra-modal
discrepancies are as large as the inter-modal gap that cannot
be neglected. (b) The cross-view and cross-modal correlations
provide more comprehensive and discriminative features
from multiple views.

Person re-identification (Re-ID) [45] is a retrieval task that aims
at matching images or videos of a certain pedestrian from multi-
ple nonoverlapping cameras. It originally focuses on visible (RGB)
images and has been well solved by existing methods [4, 9, 13, 23,
40, 48–50]. However, the visible images cannot capture discrimi-
native information when sufficient illumination is absent, making
the visible Re-ID methods ineffective. Fortunately, existing cameras
are capable of switching the visible mode to the infrared mode
if the lighting is lower than a threshold. Thanks to this attribute,
the visible-infrared person Re-ID (VI-ReID) is a feasible solution to
address the aforementioned problem. Afterwards, numerous works
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[11, 20, 26, 33, 37, 42–44] are proposed. Compared with still im-
ages, video sequences contain more abundant appearance features
and unique motion patterns. Such additional information is sig-
nificant to improve the discriminability of person representations,
especially for the infrared modality [20]. Therefore, video-based
VI-ReID (VVI-ReID) has been widely concerned in recent time, and
some works [15, 20] have made preliminary attempts for this task.

The critical problem of VVI-ReID lies in two folds: (a) Learning
the sequence-level representation that is invariant to both intra-
and inter-modal discrepancies. (b) The learned sequence-level rep-
resentations should be as discriminative as possible. However, most
existing methods have limitations on these two aspects. For the first
issue, a majority of works only concentrate on the elimination of
modality-gap, without paying attention to the intra-modal distrac-
tors including background clutter, extreme illumination changes,
etc. As shown in Fig.1(a), such intra-modal distractors will cause
variations as large as the modality-gap and subsequently hinder
the matching accuracy. As for the sequence-level representations
learning, many approaches [2, 5, 21, 25, 41] tend to achieve it from
a single video sequence, while the reciprocal correlations among
multiple videos of the same identity have been ignored. Generally,
these correlations would allow us to extract more comprehensive
and modality-consistent features, as shown in Fig.1(b). On the one
hand, the common issues for video-based Re-ID, including misalign-
ment, occlusion, etc., are thorny when only one video is available.
By contrary, the exploitation of cross-view correlations can refer
complementary information from multiple views (red circles) to
effectively alleviate such problems. On the other hand, the cross-
modal correlations establish connections between discriminative
features (blue circles) from different modalities, which allow the
modal-specific information to refer to each other and further reduce
the modality-gap.

In this paper, we propose a Style Attack and Defense (SAD) mod-
ule to learn the invariant sequence-level representations against
both intra- and inter-modal discrepancies. Inspired by the fact that
the image style can be arbitrarily transferred by AdaIN [12] opera-
tion, the core idea of Style Attack is simulating those discrepancies
by disturbing the feature extraction from a novel style disturbance
perspective. At the same time, the defense module is involved to
guide the model to keep the frame-level features consistent and
id-discriminative before and after style attacks. By this adversarial
strategy, the model becomes increasingly robust to different types
of style disturbance, and eventually learns the invariant features
towards intra-modal distractors and inter-modal modality-gap. Ob-
viously, the more diverse the frame styles are, the more challenging
attacks the model needs to defense, subsequently empowering it
with better generalization capability. Hence, before the SAD, we
further introduce the Style Augmentations (SA) to vary the image
spaces for both RGB and IR frames, providing a richer range of frame
styles. Once the frame-level features are produced, the Graph-based
Dual Interaction (GDI) module takes over to explore the correla-
tions among multiple videos of the same identity. To this end, the
GDI regards the frame-level features as nodes and constructs the
cross-view and cross-modal correlated graphs, respectively. Then,
the graph convolution network is applied for correlations explo-
ration. To overcome the absence of cross-view and cross-modal data

in the testing stage, a mutual learning manner is also adopted to
transfer the correlations to the final sequence-level representations.

In summary, the main contributions of our paper are:
• We propose the Style Attack and Defense (SAD) module with
Style Augmentation (SA) to guide the model to extract intra-
and inter-modality invariant sequence-level representations
by a novel adversarial strategy.

• A Graph-based Dual Interaction (GDI) module is proposed
to extend the sequence-level representations learning to
multiple videos of the same identity, which is instrumental
for providing more comprehensive and modality-consistent
pedestrian representations.

• Extensive experiments on image-based and video-based VI-
ReID datasets have been conducted, and the results show
that our method is superior to the SOTAs.

2 RELATEDWORK
2.1 Visible-Infrared Person Re-ID
Visible-infrared person Re-ID (VI-ReID) focuses on matching a
certain pedestrian from non-overlapping cameras among different
modalities. Wu et al. [37] and Nguyen et al. [24] jointly pioneered
this field and contributed the most widely used benchmarks: SYSU-
MM01 and RegDB datasets. The key for VI-ReID is learning the
discriminative person representations that are invariant against
modality-gap. To solve this issue, many works have been proposed
from different perspectives including feature and metric learning
[8, 18, 20, 30, 32, 33, 36, 38, 44, 46], modality generation [3, 35, 47],
auxiliary information utilization [17, 19, 29] and data augmentation
[6, 19, 27, 31, 43]. Our work models the intra- and inter-modal
discrepancies through style augmentation and disturbance, which
is more related to the modality generation and data augmentation
methods.

The modality generation aims to translate a given modality to
the another one, so the modality-consistence is achieved. For ex-
ample, Wang et al. [35] introduced AlignGAN to transform the
RGB images to the IR version by confusing a discriminator, and the
retrieval was then conducted in the IR feature space. Besides, Choi
et al. [3] disentangled the features into id-discriminative and id-
excluded parts. The modality-gap was then alleviated by generating
cross-modal id-consistent images based onmodality-mixed features.
Since directly generating cross-modal images may introduce lots of
noise for the sake of the significant modality-gap, Zhang et al. [47]
conducted GAN-based generation in the feature-level and utilized
the generated cross-modal features for modality compensation.

Data augmentation is another widely used strategy to boost the
performance for VI-ReID. Fan et al. [6] split the RGB images into R,
G, B channels and added an additional gray image channel to obtain
more IR-similar data for training. Similarly, Ye et al. [43] augmented
the data by extending a randomly selected color channel (R,G,B) to a
three-channel image. Except for only considering the RGBmodality,
Qian et al. [27] combined the patches from both modalities and
generated an intermediatemodality based on patchesmixing, which
was further utilized to reduce the modality-gap. Furthermore, Liang
et al. [19] directly disturbed the color information of the human
body by introducing the additional human key-point heatmap and
ColorJitter operation.
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Figure 2: The pipeline of our SAADG. Given a video, the SA module is first applied to change the style of each frame. We then
utilize the ResNet50 to extract frame-level features where the intra- and inter-modal style attacks are respectively embedded
between the (3𝑟𝑑 ,4𝑡ℎ) and (4𝑡ℎ , 5𝑡ℎ) CONV blocks to disturb the feature extraction, and the defense module will force the model
to keep feature consistent. Followed by the GDI, the cross-view and cross-modal correlations are explored and transferred to
the sequence-level representations.

2.2 Video-based Person Re-ID
Since videos contain much richer information than still images,
video-based person Re-ID has attracted extensive attention in recent
time. The critical issue for it is to learn discriminative sequence-level
representations. To achieve that, many methods based on Recurrent
Neural Network (RNN) [21, 22, 39], 3D-convolution [1, 10, 16], and
Graph Neural Network (GNN) [2, 25, 41] have been proposed.

The GNN-based methods draw more attention in recent time
for the sake of its light-weight and the ability to model multi-level
correlations among human parts, videos frames and instances. For
example, Yang et al. [41] introduced both spatial and temporal
graph to simultaneously explore the intra-frame structural and
cross-frame complementary information. Taking the auxiliary key-
point information into consideration, Chen et al. [2] established
graph among keypoints of all frames and introduced the graph con-
volution network (GCN) to assist representation learning on CNN
features. In addition to the graph among keypoints, Ning et al. [25]
further built up connection networks between frame-level features
and keypoints, fully exploiting the global and local information.
However, almost all of the GNN-based methods limited the feature
learning into a single video but ignored the correlations of multiple
videos of the same identity.

Compared to these methods, our SAADG addresses the VVI-
ReID by jointly considering the cross-view and cross-modal corre-
lations among different videos, which achieves more discriminative
sequence-level representations.

3 THE PROPOSED METHOD
In this paper, we propose a novel method SAADG to obtain discrim-
inative sequence-level representations that are invariant against
both intra- and inter-modal discrepancies. The pipeline of SAADG
is shown in Fig.2. Here, we denote a RGB and an IR sequence

of a same pedestrian as V = {V𝑡 |V𝑡 ∈ R𝐻𝑖𝑚×𝑊𝑖𝑚×3}𝑇
𝑡=1 and

I = {I𝑡 |I𝑡 ∈ R𝐻𝑖𝑚×𝑊𝑖𝑚 }𝑇
𝑡=1, where 𝐻𝑖𝑚 and𝑊𝑖𝑚 are the height

and width of each frame, 𝑡 means the 𝑡-th frame and there are 𝑇
frames in total.

Initially, the RGB and IR sequences are passed into the Style
Augmentation, where the style information of each frame is signifi-
cantly varied (Section. 3.1). Afterwards, we take ResNet50 as the
backbone [20] to extract frame-level features. Meanwhile, the intra-
and inter-modal Style Attack is respectively embedded between
the (3𝑟𝑑 , 4𝑡ℎ) and (4𝑡ℎ, 5𝑡ℎ) CONV blocks for disturbance. The De-
fense module is then attached to keep the feature to be consistent
and discriminative before and after the attack (Section. 3.2). Once
the frame-level features generated, they are further passed into
the Graph-based Dual Interaction module to mine both cross-view
and cross-modal correlations. Finally, a mutual learning manner is
introduced to fully transfer the correlations into the sequence-level
representations (Section. 3.3).

3.1 Style Augmentation (SA)
The more diverse styles feeded to the model, the better generaliza-
tion capability of the model can achieve from training. To obtain
multiple frame styles, our SA randomly disturbs the image space
of each frame for both RGB and IR modalities.

As shown in Fig.3, we first sample a series of style variation
factors 𝛼, 𝛽,𝛾 and 𝛿 from a uniform distribution U(0.5, 1, 5). They
are then utilized for channel-wise style variation to change the
appearance information of each frame:

V𝑡𝑎𝑢𝑔 = [𝛼V𝑡𝑅, 𝛽V
𝑡
𝐺 , 𝛾V

𝑡
𝐵]

I𝑡𝑎𝑢𝑔 = 𝛿I𝑡
(1)
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Figure 3: The insight of the SA module. The style variation
factors are sampled from the uniform distribution U(0.5, 1, 5)
and utilized to change the appearance. For visible modality,
the random channel permutation is further introduced for
richer styles.

where the V𝑅,V𝐺 ,V𝐵 means the R,G,B channels for a RGB frame.
Besides, since the IR frames only have one channel, we extend them
to three-channel images by replication.

To further expand the variety of styles, we randomly permute
the color channels for each RGB frame:

V𝑡𝑎𝑢𝑔 = 𝑅𝑎𝑛𝑑𝑝𝑒𝑟𝑚(V𝑡𝑎𝑢𝑔) (2)

where the 𝑅𝑎𝑛𝑑𝑝𝑒𝑟𝑚(·) means the random permutation of color
channels for current RGB frame with equal probability.

After the style variation, the appearance of each frame has been
significantly changed, as shown in Fig.4(a). These diverse styles
contribute to the more challenging style attacks, which helps the
model be more robust to different scenarios.

RGB Modality

(c) HUE Jitter 

RGB Modality IR ModalityRGB Modality IR Modality

(b) Channel Augmentation 

IR Modality

(d) Patch Mixing 

RGB&IR Modality

Color Channel
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No 
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(a) Style Augmentation

Figure 4: Comparison between SA and other data augmenta-
tion methods. (a) Our SA module; (b) Channel Augmentation
[43]; (c) HUE Jitter [19]; (d) Patch Mixing [27]

Discussion. Here, we illustrate the differences between our SA
and other data augmentation methods. We list three typical meth-
ods in Fig.4(b)-(d). The Channel Augmentation [43] and the Hue
Jitter [19] only take the RGB modality into consideration. The for-
mer generates more IR-similar data by extending the single R/G/B
channel to a three-channel image, while the latter changes the color

information of the human body by using ColorJitter and keypoints
heatmap. The Patch Mixing [27] fuses the patches from RGB and IR
modalities to generate an intermediate modality. Different from the
above methods, our SA creates frames with a richer variety of styles
for both RGB and IR modalities, separately. Furthermore, except for
the generated data that can be regarded as data augmentation, our
method also highly concentrates on the style information (i.e., the
mean and variance of the frame-level features). We will elaborate
how to utilize it for the style attack in the following subsection.

3.2 Style Attack and Defense (SAD)
In the VI-ReID task, the intra-modal distractors including pedestrian
postures, viewpoints, and camera styles, etc., usually increase the
difficulty for Re-ID (as shown Fig.1(a)). Furthermore, compared with
still images, the video sequences contain multiple frames where the
frame-level variances may cause even more contamination on the
sequence-level representations. To simultaneously defense against
all these distractors and the modality-gap, a robust model on the
intra- and inter-modal disturbance is significant. To this end, we
propose the Style Attack and Defense module (SAD) by introducing
an adversarial strategy from a novel style disturbance perspective.
Particularly, the SAD models the intra-modal distractors and the
inter-modal modality-gap as the style disturbance on a pedestrian.
By embedding different types of disturbance into the learned fea-
tures, our model is enforced to extract id-discriminative features
that are invariant to both intra- and inter-modal discrepancies.

AdaIn

AdaIn

sampling

sampling

Turbulent Frames

Input

RGB Frame

Input 

IR Frame

Intra-Modal Attack

Inter-Modal Attack

IR samples

in a mini-batch

……

RGB samples

in a mini-batch

……

Figure 5: The process of style attack. The turbulent frame
utilize its style information to disturb that of the input frame.

Mathematically, let 𝐸𝑐𝑜𝑛𝑣3, 𝐸𝑐𝑜𝑛𝑣4 and 𝐸𝑐𝑜𝑛𝑣5 be the 3-𝑟𝑑 , 4-𝑡ℎ
and 5-𝑡ℎ CONV blocks in the backbone, respectively. In a mini-
batch, there are 𝑁 video-sequences and totally 𝑁 ×𝑇 frames for
each modality. Here, we denote the frame-level features correspond-
ing to RGB and IR from the X-𝑡ℎ CONV block as {f𝑐𝑜𝑛𝑣𝑋

𝑉 ,𝑖
}𝑁𝑇
𝑖=1 and

{f𝑐𝑜𝑛𝑣𝑋
𝐼,𝑗

}𝑁𝑇
𝑗=1. Without the loss of generality, we take the RGBmodal-

ity as the example to show the mechanism of the SAD.
The intra-modal attack is embedded between the 3-𝑟𝑑 and 4-

𝑡ℎ CONV blocks. As shown in Fig.5, for each RGB frame f𝑐𝑜𝑛𝑣3
𝑉 ,𝑖

,
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we randomly select another turbulent frame f𝑐𝑜𝑛𝑣3
𝑉 ,𝑘

from the mini-
batch to disturb it via a style disturbance manner. Then, a turbulent
feature for f𝑐𝑜𝑛𝑣3

𝑉 ,𝑖
is obtained:

f̃𝑐𝑜𝑛𝑣3𝑉 ,𝑖 = 𝛿 (f𝑐𝑜𝑛𝑣3
𝑉 ,𝑘

)
(
f𝑐𝑜𝑛𝑣3
𝑉 ,𝑖

− 𝜇 (f𝑐𝑜𝑛𝑣3
𝑉 ,𝑖

)
𝛿 (f𝑐𝑜𝑛𝑣3

𝑉 ,𝑖
)

)
+ 𝜇 (f𝑐𝑜𝑛𝑣3

𝑉 ,𝑘
) (3)

where 𝛿 (·) and 𝜇 (·) represent the variance and the mean of the
input feature. Based on the Eq.(3), the feature extraction is under
strong intra-modal attack from both frame-level and instance-level
variations. Obviously, if the model is capable of defending these
attacks and capturing discriminative features, its robustness would
be highly boosted.

Except for the distractors within a single modality, the modality-
gap is another thorny problem for VI-ReID. Therefore, we further
introduce the inter-modal attack to simulate such gap and guide
the model to alleviate it, as shown in the dash line in Fig.5. After
the intra-modal attack, the turbulent features are passed to the
4-𝑡ℎ CONV block to get f̃𝑐𝑜𝑛𝑣4

𝑉 ,𝑖
= 𝐸𝑐𝑜𝑛𝑣4 (̃f𝑐𝑜𝑛𝑣3𝑉 ,𝑖

) and the inter-
modal attack is subsequently conducted. Being similar to Eq.(3), an
intra-modal-attacked IR feature f̃𝑐𝑜𝑛𝑣4

𝐼 , 𝑗
is randomly selected as the

disturbance and the f̃𝑐𝑜𝑛𝑣4
𝑉 ,𝑖

can be further contaminated through
inter-modal attack:

f̃𝑐𝑜𝑛𝑣4𝑉 ,𝑖 = 𝛿 (f𝑐𝑜𝑛𝑣4𝐼 , 𝑗 )
(
f𝑐𝑜𝑛𝑣4
𝑉 ,𝑖

− 𝜇 (f𝑐𝑜𝑛𝑣4
𝑉 ,𝑖

)
𝛿 (f𝑐𝑜𝑛𝑣4

𝑉 ,𝑖
)

)
+ 𝜇 (f𝑐𝑜𝑛𝑣4𝐼 , 𝑗 ) (4)

After the inter-modal attack, the final CONV block and a global
average pooling layer are used to produce final turbulent features
for the RGB modality f̃𝑉 ,𝑖 = 𝐺𝐴𝑃 (𝐸𝑐𝑜𝑛𝑣5 (̃f𝑐𝑜𝑛𝑣4𝑉 ,𝑖

)). Referring to the
IR modality, turbulent features can be obtained in the symmetrical
way. As a result, the features for RGB and IR modalities after the
style attack can be formulated as F̃𝑉 = {̃f𝑉 ,𝑖 }𝑁𝑇𝑖=1 and F̃𝐼 = {̃f𝐼 , 𝑗 }𝑁𝑇𝑗=1.

Based on style attack, the frame-level features are severely con-
taminated by intra-modal variations at both frame-level and instance-
level as well as the inter-modal discrepancies. Intuitively, if the
model can keep the discriminability and consistency of the
learned features before and after the attack, the robustness of it
against both intra- and inter-modal discrepancies in various scenar-
ios is achieved. To this end, the defense module, which consists of
the discriminative and the consistent terms, is presented to guide
the model to survive from the inferior influences caused by style
attacks. In detail, denoting the attack-free features for the RGB and
IR modalities as F𝑉 = {f𝑉 ,𝑖 }𝑁𝑇𝑖=1 and F𝐼 = {f𝐼 , 𝑗 }𝑁𝑇𝑗=1, the defense
module can be formulated as:

𝐿𝑑𝑖𝑠 =
1

2𝑁𝑇
(
𝑁𝑇∑︁
𝑖=1

𝐶𝐸 (𝑝𝑉 ,𝑖 , 𝑦𝑖 ) +
𝑁𝑇∑︁
𝑗=1

𝐶𝐸 (𝑝𝐼 , 𝑗 , 𝑦 𝑗 ))

𝐿𝑐𝑜𝑛 =

F𝑉 − F̃𝑉
2
2
+

F𝐼 − F̃𝐼
2
2

𝐿𝑆𝐴𝐷 = 𝐿𝑑𝑖𝑠 + 𝐿𝑐𝑜𝑛

(5)

where 𝐶𝐸 (·) is the identity loss defined by cross-entropy, 𝑝𝑉 ,𝑖 /𝑝𝐼 , 𝑗
mean the prediction based on f̃𝑉 ,𝑖 /̃f𝐼 , 𝑗 , and 𝑦𝑖 /𝑦 𝑗 represent the cor-
responding identity labels.

3.3 Graph-based Dual Interaction (GDI)
Although a video-sequence contains multiple frames, the viewpoint
and scene are still fixed, limiting its representation learning from
other viewpoints. This fact motivates us that we can jointly uti-
lize all videos of the same identity in a mini-batch to learn more
comprehensive sequence-level representations. Furthermore, the
cross-modal interaction among videos also offers an opportunity
for the modal-specific features to learn the complementary knowl-
edge from the other modality. Consequently, the modality-gap can
be further reduced by a modality compensation manner. To this
end, the Graph-based Dual Interaction (GDI) module builds the
cross-view and cross-modal correlated graph for each identity.

Graph Construction. For the 𝑝-th person in a mini-batch,
we build RGB cross-view, IR cross-view and cross-modal corre-
lated graph as shown in Fig.(2), denoting as G𝑝,𝑉𝑐𝑣 (V𝑝,𝑉

𝑐𝑣 , E𝑝,𝑉𝑐𝑣 ),
G𝑝,𝐼𝑐𝑣 (V𝑝,𝐼

𝑐𝑣 , E𝑝,𝐼𝑐𝑣 ) and G𝑝𝑐𝑚 (V𝑝
𝑐𝑚, E

𝑝
𝑐𝑚), respectively. Among three

graphs, the G𝑝,∗𝑐𝑣 (V𝑝,∗
𝑐𝑣 , E𝑝,∗𝑐𝑣 ), ∗ ∈ {𝑉 , 𝐼 } treat all RGB or IR frame-

level features as nodes, while the G𝑝𝑐𝑚 (V𝑝
𝑐𝑚, E

𝑝
𝑐𝑚) treat all frame-

level features of the 𝑝-th person as nodes. For the edges, the
G𝑝,∗𝑐𝑣 (V𝑝,∗

𝑐𝑣 , E𝑝,∗𝑐𝑣 ) and G𝑝𝑐𝑚 (V𝑝
𝑐𝑚, E

𝑝
𝑐𝑚) establish pair-wise connec-

tions between frames from different views and modalities, respec-
tively. Note that the three graphs of different people share the same
topology (i.e., edge connections). Intuitively, the more similar the
two frames are, the stronger connections they should hold. There-
fore, we further construct the adjacency matrix A𝑝,∗𝑐𝑣 ∈ R𝑀𝑇×𝑀𝑇
and A𝑝𝑐𝑚 ∈ R2𝑀𝑇×2𝑀𝑇 associate to both kinds of graphs based on
cosine similarity. The formulations of the graph construction can
be found in Tab.1.

Correlations Exploration. Once the graphs established, two
GCNs are utilized for correlations exploration. Following [14], let
Ã𝑝,∗𝑐𝑣 = A𝑝,∗𝑐𝑣 + IMT and Ã𝑝𝑐𝑚 = A𝑝𝑐𝑚 + I2MT, the re-normalization
trick is applied to both adjacent matrices:

Â𝑝,∗𝑐𝑣 = (D̃𝑝,∗𝑐𝑣 )−
1
2 Ã𝑝,∗𝑐𝑣 (D̃

𝑝,∗
𝑐𝑣 )−

1
2

Â𝑝𝑐𝑚 = (D̃𝑝𝑐𝑚)−
1
2 Ã𝑝𝑐𝑚 (D̃𝑝𝑐𝑚)−

1
2

(6)

where D̃(𝑖,𝑖 ) =
∑
𝑗 Ã(𝑖, 𝑗 ) is the corresponding degree matrix, and

IMT/I2MT are the identity matrices whose dimensions are𝑀𝑇 /2𝑀𝑇 ,
respectively.

Afterwards, the cross-view correlations F̂𝑝 = [F̂𝑝
𝑉
, F̂𝑝
𝐼
] and cross-

modal correlations F𝑝 for the 𝑝-th person can be obtained through
Eq.(7) and Eq.(8):

F̂𝑝 = [Â𝑝,𝑉
𝑐𝑣 F𝑝

𝑉
W𝑐𝑣, Â

𝑝,𝐼
𝑐𝑣 F

𝑝

𝐼
W𝑐𝑣 ] (7)

F
𝑝
= Â𝑝𝑐𝑚 [F𝑝

𝑉
, F𝑝
𝐼
]W𝑐𝑚 (8)

where F𝑝
𝑉
/F𝑝
𝐼
means all RGB/IR frame-level features for the 𝑝-th

person, [, ] means the concatenation, and W𝑐𝑣/W𝑐𝑚 denotes the
parameters for two GCNs.

Mutual Learning. Notably, the correlations exploration is in-
feasible in the testing stage. To solve it, a mutual learning manner
is proposed to make the model adaptively transfer the above cor-
relations to the sequence-level representations. Specifically, there
are 𝑃 different people in a mini-batch. The frame-level features
F = {[F𝑝

𝑉
, F𝑝
𝐼
]}𝑃
𝑝=1, the cross-view correlations F̂ = {F̂𝑝 }𝑃

𝑝=1, and

the cross-modal correlations F = {F𝑝 }𝑃
𝑝=1 are supervised by the
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Table 1: The formulations for cross-view and cross-modal graph constructions. In a mini-batch, there are 𝑀 RGB and 𝑀 IR
videos for each person, and each video contains 𝑇 frames.

Graph Nodes V edges E Adjacency Matrix A

G𝑝,∗𝑐𝑣 (V𝑝,∗
𝑐𝑣 , E𝑝,∗𝑐𝑣 ) V𝑝,∗

𝑐𝑣 = {f𝑝,∗
𝑖, 𝑗

}𝑀,𝑇
𝑖=1, 𝑗=1 E𝑝,∗𝑐𝑣 = {(f𝑝,∗

𝑖, 𝑗
, f𝑝,∗𝑚,𝑛)}𝑖≠𝑚 A𝑝,∗𝑐𝑣 (𝑚,𝑛) =

{ f𝑚 ·f𝑛
∥f𝑚 ∥ ∥f𝑛 ∥ , (f𝑚, f𝑛) ∈ E𝑝,∗𝑐𝑣
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

G𝑝𝑐𝑚 (V𝑝
𝑐𝑚, E

𝑝
𝑐𝑚) V𝑝

𝑐𝑚 = {f𝑝,𝑉
𝑖

}𝑀𝑇
𝑖=1 ∪ {f𝑝,𝐼

𝑗
}𝑀𝑇
𝑗=1 E𝑝𝑐𝑚 = {(f𝑝,𝑉

𝑖
, f𝑝,𝐼
𝑗

)} A𝑝𝑐𝑚 (𝑚,𝑛) =
{ f𝑚 ·f𝑛
∥f𝑚 ∥ ∥f𝑛 ∥ , (f𝑚, f𝑛) ∈ E𝑝𝑐𝑚
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Table 2: Comparisons of our method with SOTA methods on HITSZ-VCM in terms of CMC(%) and mAP(%).

Method Sources Type Infrared to Visible (I2V) Visible to Infrared (V2I)
R1 R5 R10 R20 mAP R1 R5 R10 R20 mAP

LbA [26] ICCV’21 Image 46.38 65.29 72.23 79.41 30.69 49.30 69.27 75.90 82.21 32.38
MPANet [38] CVPR’21 Image 46.51 63.07 70.51 77.77 35.26 50.32 67.31 73.56 79.66 37.80
DDAG [44] ECCV’20 Image 54.62 69.79 76.05 81.50 39.26 59.03 74.64 79.53 84.04 41.50
VCD [33] CVPR’21 Image 54.53 70.01 76.28 82.01 41.18 57.52 73.66 79.38 83.61 43.45
CAJL [43] ICCV’21 Image 56.59 73.49 79.52 84.05 41.49 60.13 74.62 79.86 84.53 42.81
SGIEL† [7] CVPR’23 Image 67.65 80.32 84.73 - 52.30 70.23 82.19 86.11 - 52.54
MITML [20] CVPR’22 Video 63.74 76.88 81.72 86.28 45.31 64.54 78.96 82.98 87.10 47.69
IBAN [15] TCSVT’23 Video 65.03 78.34 82.98 87.19 48.77 69.58 81.51 85.43 88.78 50.96
Ours - Video 67.23 79.30 83.66 87.43 50.46 70.68 82.19 85.37 88.55 53.28
Ours† - Video 69.22 80.61 85.03 88.66 53.77 73.13 83.47 86.86 89.72 56.09

identity loss, which are jointly denoted as 𝐿𝑔𝑖𝑑 . Then, the cross-view
and cross-modal mutual learning can be formulated as:

𝐿𝑚𝑙 =
1

2𝑁𝑇
(
2𝑁𝑇∑︁
𝑖=1

𝐷𝐾𝐿 (𝑝𝑖 | |𝑝𝑐𝑣𝑖 ) +
2𝑁𝑇∑︁
𝑖=1

𝐷𝐾𝐿 (𝑝𝑖 | |𝑝𝑐𝑚𝑖 )) (9)

where 𝑝𝑖 , 𝑝𝑐𝑣𝑖 , 𝑝𝑐𝑚
𝑖

denote the prediction based on the frame-level
features f𝑖 ∈ F and the corresponding correlations f𝑐𝑣

𝑖
∈ F̂, f𝑐𝑚

𝑖
∈ F,

respectively. 𝐷𝐾𝐿 (·) means the Kullback-Leibler divergence be-
tween two distributions.

The objective of GDI is the combination of the identity loss and
mutual learning loss: 𝐿𝐺𝐷𝐼 = 𝐿𝑔𝑖𝑑 + 𝐿𝑚𝑙 .

3.4 Training Objectives
Finally, the sequence-level representations of each pedestrian can
be obtained through temporal average pooling over all frame-level
features, as shown in Fig.2.

The total objective function of our SAADG is defined as:

𝐿 = 𝐿𝑖𝑑 + 𝐿𝑡𝑟𝑖 + 𝐿𝑆𝐴𝐷 + 𝜆𝐿𝐺𝐷𝐿 (10)

where 𝐿𝑖𝑑 and 𝐿𝑡𝑟𝑖 are identity loss and triplet loss based on the
sequence-level representations, 𝜆 is utilized to balance the contri-
bution of the SAD and GDI, which is set to 0.5.

4 EXPERIMENTS
4.1 Experiments Settings
Dataset andEvaluationProtocol.Weevaluate ourmethodmainly
on the dataset HITSZ-VCM [20], which is specifically designed
for VVI-ReID. It is captured by 6 visible and 6 infrared cameras

and is officially divided into the training and testing sets. Specifi-
cally, the training set contains 500 identities with 6,142 visible and
4,919 infrared video sequences, while the testing set contains 427
identities with 5,643 visible and 5,159 infrared video sequences.
The testing protocol contains both ‘infrared-to-visible (I2V)’ and
‘visible-to-infrared (V2I)’. Notably, our SA and SAD can be treated
as plug-in modules for existing methods. To further show their
transferability, we also add them to existing image-based VI-ReID
methods which are evaluated on the SYSU-MM01 dataset. It con-
tains images captured by 4 visible and 2 infrared cameras with 395
identities for training and another 96 identities for evaluation. We
conduct experiments in both all-search and indoor-search modes
under single-shot setting, where all-search(indoor-search) means
that images from all visible cameras (indoor visible cameras) are
utilized to form the gallery set. For quantitatively evaluation, we
adopt the widely used Cumulative Matching Characteristic curve
(CMC) and mean Average Precision (mAP) as metrics.

Implementation Details. We adopt the same backbone as that
in [20]. Besides, a strong backbone is also adopted by following the
[7] to make a fair comparison with [7]. The strong backbone re-
places the average pooling layer with GEM-pooling similar to [45]
and additionally takes the Channel-Level Random Erasing that pro-
posed in [43] for further data augmentation. To fairly compare with
the image-based and video-based methods, we follow the widely
utilized settings to form a mini-batch. Specifically, 8 identities are
randomly sampled, each of which contains 2(4) visible and 2(4)
infrared videos(images) for HITSZ-VCM(SYSU-MM01). The SGD
optimizer is utilized with the weight decay of 5 × 10−4 and the mo-
mentum of 0.9 for optimization. The learning rate is initialized to
0.1 with a linear warmup strategy for 10 epochs, and then decayed

51



Video-based Visible-Infrared Person Re-Identification via
Style Disturbance Defense and Dual Interaction MM ’23, October 29-November 3, 2023, Ottawa, ON, Canada

at the 60-th and 120-th epochs with a decay factor of 0.1. Besides,
being similar to [20], we set the learning rate of the backbone to
be one-tenth of other components in the whole training process of
200 epochs.

Table 3: The effectiveness of SA and SAD on image-based
methods. The experiments are conducted on SYSU-MM01
under the single-shot setting.

Method Sources All Search Indoor Search
R1 mAP R1 mAP

AGW TPAMI2021 47.50 47.65 55.89 62.76
AGW+SA+SAD - 57.95 54.77 69.34 73.25

DDAG ECCV2020 54.75 53.02 61.02 67.98
DDAG+SA+SAD - 60.27 55.32 67.12 72.03

CAJL ICCV2021 69.88 66.89 76.30 80.40
CAJL+SA+SAD - 71.02 67.65 78.71 81.05

4.2 Comparison with Existing Methods
In this subsection, we compare our method with state-of-the-art
VI-ReID methods, including image-based and video-based ones.
Specifically, for the image-based methods, the DDAG[44], CAJL[43],
LbA[26], MPANet[38], VCD[33], and SGIEL[7] are taken into con-
sideration. For a fair comparison, the frame-level features are ob-
tained through the image-based methods and a temporal average
pooling layer is conducted to form the sequence-level represen-
tations. The video-based methods contain MITML [20] and IBAN
[15].

The results are shown in Tab.2, in which the † means that the
strong backbone is utilized. It can be found that our SAADG outper-
forms almost all VI-ReIDmethods in both I2V and V2I testingmodes
of HITSZ-VCM and is competitive to SGIELwithout the strong back-
bone. When the strong backbone is adopted, our SAADG† achieves
further improvement and is remarkable superior to SGIEL. Specifi-
cally, compared with the second best method (SGIEL), our method
obtain (+1.57% R1,+1.47% mAP) for I2V and (+2.9% R1,+3.55% mAP)
for V2I. Besides, note that the SGIEL [7] and IBAN [15] have uti-
lized additional auxiliary data, i.e., the human parsing masks and
anaglyph data. Compared with them, our method also reserves the
superiority, which further substantiates its effectiveness.

In addition, we also demonstrate the transferability of SA and
SAD modules on the image-based VI-ReID task. Specifically, we
select three methods: AGW[45], DDAG[44], CAJL[43] and evaluate
their performance on the SYSU-MM01 dataset with or without the
SA and SAD modules. The results are summarized in Tab.3. As we
can see, these two modules achieve performance improvement for
all three methods, further demonstrating the general effectiveness
of our method in both image-based and video-based VI-ReID tasks.

4.3 Ablation Study
In this subsection, we conduct ablation studies to show the contri-
bution of our proposed SA, SAD and GDI modules. All experiments
are performed on HITSZ-VCM under both I2V and V2I modes. The
results are summarized in Tab.4. The ‘base’ (Exp 1) means the strong
backbone, which is trained with identity and triplet loss.

Table 4: Ablation results for key components of our method.
We conduct all experiments based on the strong baseline on
HITSZ-VCM.

Exp
Components I2V V2I

SA SAD GDI R1 mAP R1 mAPIntra Inter CV CM ML
1 (base) 57.46 44.04 61.19 46.24

2 ✓ 63.61 49.44 67.97 52.19
3 ✓ ✓ 65.34 51.50 68.54 53.72
4 ✓ ✓ ✓ 67.84 52.75 71.17 55.26
5 ✓ ✓ 61.65 47.16 64.82 48.59
6 ✓ ✓ ✓ 64.33 49.15 67.62 51.04
7 ✓ ✓ ✓ ✓ ✓ 66.58 52.30 70.21 54.15
8 ✓ ✓ ✓ ✓ ✓ 68.39 53.05 71.66 55.61

9(full) ✓ ✓ ✓ ✓ ✓ ✓ 69.22 53.77 73.13 56.09

Table 5: Comparison between our SA and different data aug-
mentation methods. The SA in SAADG is replaced with other
data augmentation methods and evaluated on HITSZ-VCM.

Method Sources I2V V2I
R1 mAP R1 mAP

ColorJitter MM2022 67.58 52.40 71.15 54.83
Channel Augmentation ICCV2021 68.17 52.55 72.05 55.16

Style Augmentation (ours) - 69.22 53.77 73.13 56.09

Effects of SAD. We first illustrate the effectiveness of the SAD
module. In Exp 2 and Exp 3 of Tab.4, the intra-modal style attack
is added into the baseline model, followed by the addition of inter-
modal attack. Both style attack strategies have achieved remarkable
performance improvements. Besides, compared between the Exp 6
and Exp 7, the SAD module continuously boosts the matching accu-
racy with the GDI module. These facts indicate that the intra- and
inter-modal style attacks do simulate the intra-modal distractors
and the inter-modal discrepancies in real scenarios. By defending
these attacks, the SAD module effectively improves the robustness
of our model.

Effects of GDI. The GDImodule consists of cross-view (CM) and
cross-modal (CM) interaction. Similar to the SAD, we apply them to
the baseline model in order in the Exp 5 and Exp 6, which also gain
performance enhancement, respectively. Moreover, as listed in Exp
7, the GDI module still demonstrates its effectiveness combined
with the SAD module. It has been proved that the GDI module
allows our model to extract more comprehensive but view- and
modal-consistent features through the graph-based interactions.
Eventually, the comparison between Exp 8 and Exp 9 illustrates the
effectiveness of our mutual learning manner.

Effects of SA. The SA is treated as an auxiliary module for
a richer variety of frame styles, and it is closely related to the
SAD module. Therefore, we put it together with the SAD module
to demonstrate its effectiveness. As shown in Exp 4 and Exp 9,
the involvement of SA can further promote the performances in
the presence of both ‘SAD’ and ‘SAD+GDI’. It can be deduced
that the more diverse frame styles enforce the model to defense
more challenging style attacks in the training stage, improving
the generalization capability for unseen scenarios. Furthermore,
in the subsection 3.1, we have discussed the differences between
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our SA to other data augmentation methods. Here, we replace
the SA in SAADG with other methods to further demonstrate its
superiority. In detail, since the official code of Patch Mixing [27] is
temporarily unavailable, we adopt the channel augmentation [43]
and the ColorJitter without the keypoint heatmap [19] to replace
the SA, respectively. The results in Tab.5 show that the SA takes
the lead, which indicates that the diverse frame styles are indeed
more helpful in boosting the model robustness.

4.4 Visualization Analysis
In this subsection, we respectively visualize the features in the
feature spaces and on the feature maps. A comprehensive analysis
is conducted as well to illustrate why our proposed method is
effective.

(a) (b) (c)

Figure 6: Visualization of feature spaces in the testing set
by tSNE. The circles/triangles and pentagons/squares respec-
tively refer to the original and turbulent frame-level features
for visible/infrared modalities. The identity is distinguished
by color. (a) baseline pre-trained on ImageNet; (b) baseline;
(c) Our proposed SAADG.

Visualization of Feature Spaces. Here, we randomly select
6 people in the testing set and visualize their original and turbu-
lent frame-level features by t-SNE [34]. As shown in Fig.6, the
‘baseline’ model that pre-trained on ImageNet fails to alleviate the
modality-gap and separate different people. Nonetheless, the SA
and SAD do generate frames with richer styles, which resulting in
a more diverse feature space distribution. Besides, compared with
the ‘baseline’ model, our proposed model has better robustness for
the style attacks and achieves to keep the feature invariant before
and after the attacks. Consequently, our proposed model learns a
more accurate feature space, where features from both modalities
are well grouped according to the identity.

Visualization on Feature Maps. Furthermore, we randomly
choose a person and visualize the feature maps of both modalities
in different scenarios (identified by different camera id). We uti-
lize the last feature map of the backbone and visualize it through
GradCAM [28]. The results are illustrated in Fig.7. It shows that the
‘baseline’ model tends to focus on specific local parts to identify a
person. Besides, the focused parts are inconsistent among different
scenarios, and even exist misalignments (e.g., the left parts in Cam
6 for the visible modality and the top left corner in Cam 4 for the in-
frared modality). By contrast, our proposed method concentrates on
the whole person, and the attention regions are consistent among
different scenarios and modalities. As a result, it can learn more

Visible 

Modality

Cam 2 Cam 5 Cam 6

Cam 1 Cam 3 Cam 4

Infrared 

Modality

BaselineBaseline

OursOurs

Figure 7: Visualization of feature maps in multiple scenarios
(different Cam IDs) for both modalities. The red and green
bounding boxes denote feature maps of the baseline and our
SAADG.

comprehensive representations that are invariant to both intra- and
inter modal discrepancies.

5 CONCLUSION
In this paper, we solve the two key issues for video-based visible-
infrared person Re-ID (VVI-ReID). The one is learning invariant
sequence-level representations against both intra- and inter-modal
discrepancies. We achieve it from a novel style disturbance perspec-
tive and propose the Style Attack and Defense (SAD) module. The
SAD simulates those discrepancies by applying different types of
style attack during the feature extraction, and then it enforces the
model to keep the feature consistent. By this adversarial strategy,
the robustness of the model on both intra- and inter-modal discrep-
ancies has been boosted. We also append a Style Augmentation
(SA) module before the SAD to generate a richer range of frame
styles, which provide the model with more challenging style attacks.
The other issue is that the learned sequence-level representations
should be as discriminative as possible. Different from existing
methods, we extend the representation learning to multiple videos.
The Graph-based Dual Interaction (GDI) is then proposed to explore
the cross-view and cross-modal correlations. Thanks to the GDI,
more comprehensive and consistent sequence-level representations
can be achieved. Extensive experiments on both the image-based
dataset SYSU-MM01 and video-based dataset HITSZ-VCM have
shown the effectiveness of our method.
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